Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Methoxybenzaldehyde 2,4-dinitrophenylhydrazone

Hoong-Kun Fun,^a* Reza Kia^a‡ and Hadi Kargar^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran Correspondence e-mail: hkfun@usm.my

Received 4 December 2008; accepted 1 January 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.045; wR factor = 0.126; data-to-parameter ratio = 23.6.

In the title compound, $C_{14}H_{12}N_4O_5$, an intramolecular N- $H \cdots O$ hydrogen bond generates an S(6) ring motif. The dihedral angle between the two benzene rings is $3.91 (3)^\circ$, which shows the molecule is almost planar. The para-nitro group is twisted from the benzene ring to which it is attached, making a dihedral angle of $8.50 (9)^{\circ}$. In the crystal structure, molecules are linked together by intermolecular C-H···O and intermolecular three-centred O···O [2.8646 (12)-2.9213 (11) Å] and $O \cdots N$ [3.0518 (11) Å] interactions. The crystal structure is further stabilized by intermolecular π - π interactions [centroid-to-centroid distances 3.5708 (6)-3.9728 (12) Å].

Related literature

For general background, see: Lamberton et al. (1974); Zegota (1999); Cordis et al. (1998); Zlotorzynska & Lai (1999); Niknam et al. (2005); Guillaumont & Nakamura (2000); Raj & Kurup (2006). For biological applications, see: Okabe et al. (1993). Standard bond-length data are given in: Allen et al. (1987). For details of the classification of ring motifs, see: Bernstein et al. (1995).

‡ Additional correspondence author: e-mail: zsrkk@yahoo.com.

Experimental

Crystal data

β

$C_{14}H_{12}N_4O_5$	$\gamma = 109.467 (1)^{\circ}$
$M_r = 316.28$	V = 697.99 (3) Å ³
Triclinic, P1	Z = 2
a = 7.0315 (1) Å	Mo $K\alpha$ radiation
b = 7.6205 (2) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 14.1896 (4) Å	T = 100.0 (1) K
$\alpha = 98.048 \ (1)^{\circ}$	$0.57 \times 0.23 \times 0.10 \text{ mm}$
$\beta = 97.064 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2005) $T_{\min} = 0.936, T_{\max} = 0.988$

Refinement

$R[F^- > 2\sigma(F^-)] = 0.045$ H atoms treated by a mixtu	nec
$wR(F^2) = 0.126$ independent and constra	ined
S = 1.06 refinement	
5023 reflections $\Delta \rho_{\rm max} = 0.52 \text{ e} \text{ Å}^{-3}$	
213 parameters $\Delta \rho_{\min} = -0.25 \text{ e} \text{ Å}^{-3}$	

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H1N2 \cdots O2 N2 - H1N2 \cdots O2^{i} C2 - H2A \cdots O4^{ii} C5 - H5A \cdots O2^{iii}$	0.864 (15) 0.864 (15) 0.93 0.93	2.029 (15) 2.599 (15) 2.44 2.60	2.6253 (11) 3.3475 (11) 3.3113 (12) 3.3184 (11)	125.4 (13) 145.6 (13) 155 135

14423 measured reflections

 $R_{\rm int} = 0.021$

5023 independent reflections

4442 reflections with $I > 2\sigma(I)$

mixture of

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x + 1, y, z + 1; (iii) x, y - 1, z.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/ PFIZIK/613312. RK thanks the Universiti Sains Malaysia for awarding a postdoctoral research fellowship. HK thanks PNU for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2139).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cordis, G. A., Das, D. K. & Riedel, W. (1998). J. Chromatogr. A, 798, 117-123. Guillaumont, D. & Nakamura, S. (2000). Dyes Pigm. 46, 85-92.
- Lamberton, J. A., Nelson, E. R. & Triffett, C. K. (1974). Aust. J. Chem. 27, 1521-1529
- Niknam, K., Kiasat, A. R. & Karimi, S. (2005). Synth. Commun. 35, 2231-2236. Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.

Raj, B. N. B. & Kurup, M. R. P. (2006). Spectrochim. Acta A, **71**, 1251–1260. Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Spek, A. L. (2003). J. Appl. Cryst. **36**, 7–13. Zegota, H. (1999). J. Chromatogr. A, **863**, 227–233. Zlotorzynska, E. D. & Lai, E. P. C. (1999). J. Chromatogr. A, **853**, 487–796. supplementary materials

Acta Cryst. (2009). E65, o246-o247 [doi:10.1107/S1600536809000038]

2-Methoxybenzaldehyde 2,4-dinitrophenylhydrazone

H.-K. Fun, R. Kia and H. Kargar

Comment

2,4-Dinitrophenylhydrazones play a more important role as stabilizers for the detection, characterization and protection of carbonyl groups than phenylhydrazones (Niknam *et al.*, 2005). 2,4-Dinitrophenylhydrazone derivatives are widely used in various forms of analytical chemistry (Lamberton *et al.*, 1974; Zegota, 1999; Cordis *et al.*, 1998; Zlotorzynska & Lai, 1999) and are also used as dyes (Guillaumont & Nakamura, 2000). They are also found to have versatile coordinating abilities towards different metal ions (Raj & Kurup, 2006). In addition, some phenylhydrazone derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe *et al.*, 1993). For these reasons, the structure of the title compound is reported here.

Bond lengths in the title compound (Fig. 1) are normal (Allen *et al.*, 1987). An intramolecular N—H···O hydrogen bond generates an *S*(*6*) ring motif (Bernstein *et al.*, 1995). The molecule is nearly planar, with a maximum deviation from the mean plane of -0.3464 (8) Å for atom O4 which is due to the intermolecular three-centered O···O and O···N interactions. The dihedral angle between the two benzene rings is 4.63 (1)°. Interesting features of the crystal structure include intermolecular three-centered O2···O2ⁱ [2.8646 (12) Å; (i) 1 - *x*, 1 - *y*, -*z*], O4···O4^{iv} [2.8646 (12) Å; (iv) code: -*x*, -*y*, -1 - *z*], and O4···N4ⁱⁱ [3.0518 (11) Å] interactions. The molecules are also linked by C—H···O hydrogen bonds (Table 1), and by intermolecular π - π interactions giving centroid–centroid distances for rings C1–C6 (*Cg*1) and C8–C13 (*Cg*2) of 3.5708 (6) Å and 3.9728 (12) Å [*Cg*1···*Cg*2^v; (v) -*x*, -*y*, -*z* and *Cg*1···*Cg*2^{vi}; (vi) 1 - *x*, -*y*, -*z*] (interplanar spacings are 3.3080 (4) and 3.3691 (4) Å respectively (Fig. 2).

Experimental

The title compound was synthesized based on the reported procedure (Okabe *et al.* 1993) except that 3-methoxybenzaldehyde (1 mmol, 136 mg) was used instead. Single crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a saturated solution of the resulted compound in ethanol.

Refinement

N-bound H atom was located from the difference Fourier map and refined freely. The remaining H atoms were placed in calculated positions (C—H = 0.93-0.96 Å) and refined using a riding model, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. A rotating group model was applied to the methyl group.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme. Hydrogen bond is shown as a dashed line.

Fig. 2. The crystal packing of the title compound, viewed down the *a* axis, showing the molecules are linked through intermolecular C—H···O and O···O interactions and also are stacked along the *a* axis. Intermolecular interactions are shown as dashed lines.

2-Methoxybenzaldehyde 2,4-dinitrophenylhydrazone

Crystal data	
$C_{14}H_{12}N_4O_5$	Z = 2
$M_r = 316.28$	$F_{000} = 328$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.505 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.0315(1) Å	Cell parameters from 6651 reflections
b = 7.6205 (2) Å	$\theta = 2.9 - 40.3^{\circ}$
c = 14.1896 (4) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\alpha = 98.048 \ (1)^{\circ}$	T = 100.0 (1) K
$\beta = 97.064 \ (1)^{\circ}$	Block, orange
$\gamma = 109.467 \ (1)^{\circ}$	$0.57 \times 0.23 \times 0.10 \text{ mm}$
V = 697.99 (3) Å ³	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	5023 independent reflections
Radiation source: fine-focus sealed tube	4442 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 100.0(1) K	$\theta_{\text{max}} = 32.5^{\circ}$
φ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -10 \rightarrow 10$
$T_{\min} = 0.936, T_{\max} = 0.988$	$k = -11 \rightarrow 11$
14423 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.126$	$w = 1/[\sigma^2(F_0^2) + (0.0683P)^2 + 0.1626P]$
G 107	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
5023 reflections	$\Delta \rho_{max} = 0.52 \text{ e} \text{ Å}^{-3}$
213 parameters	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O1	0.52355 (11)	0.19077 (9)	0.30740 (5)	0.01789 (14)
O2	0.31793 (12)	0.47602 (10)	-0.06604 (5)	0.02132 (15)
O3	0.20422 (12)	0.51054 (10)	-0.20851 (5)	0.02350 (16)
O4	-0.18137 (11)	-0.00408 (11)	-0.45869 (5)	0.02104 (15)
O5	-0.19171 (12)	-0.28928 (10)	-0.44929 (5)	0.02410 (16)
N1	0.27092 (11)	0.00256 (11)	0.02604 (5)	0.01410 (14)
N2	0.26656 (12)	0.13732 (11)	-0.02830 (5)	0.01416 (14)
N3	0.22761 (12)	0.40930 (10)	-0.15138 (6)	0.01487 (15)
N4	-0.14093 (12)	-0.11921 (11)	-0.41450 (5)	0.01611 (15)
C1	0.46732 (13)	0.00043 (12)	0.27560 (6)	0.01377 (15)
C2	0.48758 (14)	-0.12628 (13)	0.33510 (6)	0.01710 (17)
H2A	0.5476	-0.0815	0.4001	0.021*
C3	0.41767 (15)	-0.31935 (14)	0.29676 (7)	0.01947 (18)
H3A	0.4306	-0.4035	0.3365	0.023*
C4	0.32856 (14)	-0.38821 (13)	0.19954 (7)	0.01804 (17)
H4A	0.2814	-0.5177	0.1745	0.022*
C5	0.31052 (13)	-0.26234 (12)	0.14015 (6)	0.01530 (16)
H5A	0.2514	-0.3085	0.0751	0.018*
C6	0.38009 (12)	-0.06701 (12)	0.17671 (6)	0.01284 (15)
C7	0.36703 (13)	0.06671 (12)	0.11394 (6)	0.01371 (15)
H7A	0.4276	0.1967	0.1373	0.016*
C8	0.17242 (12)	0.07996 (12)	-0.12228 (6)	0.01178 (15)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C9	0.09189 (13)	-0.11672 (12)	-0.16426 (6)	0.01378 (15)
H9A	0.1056	-0.2038	-0.1266	0.017*
C10	-0.00529 (13)	-0.18102 (12)	-0.25882 (6)	0.01405 (15)
H10A	-0.0547	-0.3101	-0.2852	0.017*
C11	-0.02975 (12)	-0.05112 (12)	-0.31553 (6)	0.01291 (15)
C12	0.04681 (12)	0.14065 (12)	-0.27956 (6)	0.01311 (15)
H12A	0.0307	0.2253	-0.3184	0.016*
C13	0.14893 (12)	0.20609 (11)	-0.18400 (6)	0.01222 (15)
C14	0.64623 (15)	0.27271 (14)	0.40200 (7)	0.01993 (18)
H14A	0.6876	0.4084	0.4120	0.030*
H14B	0.7657	0.2377	0.4074	0.030*
H14C	0.5675	0.2269	0.4500	0.030*
H1N2	0.329 (2)	0.256 (2)	-0.0027 (11)	0.035 (4)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0227 (3)	0.0151 (3)	0.0117 (3)	0.0049 (2)	-0.0022 (2)	-0.0014 (2)
02	0.0294 (4)	0.0137 (3)	0.0151 (3)	0.0053 (3)	-0.0036 (3)	-0.0028 (2)
O3	0.0317 (4)	0.0130 (3)	0.0239 (4)	0.0077 (3)	-0.0032 (3)	0.0055 (3)
O4	0.0218 (3)	0.0268 (4)	0.0147 (3)	0.0103 (3)	-0.0016 (2)	0.0048 (3)
O5	0.0274 (4)	0.0189 (3)	0.0185 (3)	0.0055 (3)	-0.0040 (3)	-0.0063 (3)
N1	0.0153 (3)	0.0149 (3)	0.0115 (3)	0.0049 (2)	0.0015 (2)	0.0030 (2)
N2	0.0173 (3)	0.0123 (3)	0.0109 (3)	0.0042 (3)	-0.0004 (2)	0.0014 (2)
N3	0.0162 (3)	0.0115 (3)	0.0158 (3)	0.0051 (2)	0.0007 (3)	0.0007 (2)
N4	0.0144 (3)	0.0190 (3)	0.0126 (3)	0.0052 (3)	-0.0001 (2)	-0.0002 (3)
C1	0.0130 (3)	0.0156 (4)	0.0116 (3)	0.0044 (3)	0.0017 (3)	0.0018 (3)
C2	0.0164 (4)	0.0212 (4)	0.0130 (4)	0.0057 (3)	0.0011 (3)	0.0049 (3)
C3	0.0199 (4)	0.0207 (4)	0.0195 (4)	0.0072 (3)	0.0041 (3)	0.0091 (3)
C4	0.0191 (4)	0.0142 (4)	0.0199 (4)	0.0042 (3)	0.0047 (3)	0.0040 (3)
C5	0.0151 (3)	0.0150 (4)	0.0136 (4)	0.0032 (3)	0.0024 (3)	0.0014 (3)
C6	0.0123 (3)	0.0145 (3)	0.0108 (3)	0.0040 (3)	0.0017 (3)	0.0018 (3)
C7	0.0145 (3)	0.0138 (3)	0.0118 (3)	0.0042 (3)	0.0019 (3)	0.0016 (3)
C8	0.0120 (3)	0.0124 (3)	0.0103 (3)	0.0042 (3)	0.0013 (3)	0.0010 (3)
C9	0.0160 (3)	0.0113 (3)	0.0128 (4)	0.0039 (3)	0.0015 (3)	0.0020 (3)
C10	0.0151 (3)	0.0111 (3)	0.0136 (4)	0.0030 (3)	0.0014 (3)	0.0001 (3)
C11	0.0119 (3)	0.0144 (3)	0.0103 (3)	0.0034 (3)	0.0000 (3)	0.0007 (3)
C12	0.0128 (3)	0.0139 (3)	0.0124 (3)	0.0051 (3)	0.0008 (3)	0.0022 (3)
C13	0.0128 (3)	0.0100 (3)	0.0129 (3)	0.0039 (3)	0.0007 (3)	0.0007 (3)
C14	0.0188 (4)	0.0225 (4)	0.0131 (4)	0.0048 (3)	-0.0019 (3)	-0.0032 (3)

Geometric parameters (Å, °)

01—C1	1.3618 (11)	C4—C5	1.3883 (13)
O1—C14	1.4344 (11)	C4—H4A	0.9300
O2—N3	1.2456 (10)	C5—C6	1.4001 (12)
O3—N3	1.2274 (10)	С5—Н5А	0.9300
O4—N4	1.2329 (10)	C6—C7	1.4617 (12)
O5—N4	1.2328 (10)	С7—Н7А	0.9300

N1—C7	1.2858 (11)	C8—C9	1.4224 (11)
N1—N2	1.3736 (10)	C8—C13	1.4227 (11)
N2—C8	1.3545 (10)	C9—C10	1.3692 (11)
N2—H1N2	0.864 (16)	С9—Н9А	0.9300
N3—C13	1.4435 (11)	C10—C11	1.3998 (12)
N4—C11	1.4520 (11)	C10—H10A	0.9300
C1—C2	1.3985 (12)	C11—C12	1.3730 (12)
C1—C6	1.4092 (11)	C12—C13	1.3912 (11)
C2—C3	1.3894 (14)	C12—H12A	0.9300
C2—H2A	0.9300	C14—H14A	0.9600
C3—C4	1.3916 (13)	C14—H14B	0.9600
С3—НЗА	0.9300	C14—H14C	0.9600
C1	118.36 (7)	C1—C6—C7	119.95 (7)
C7—N1—N2	115.65 (7)	N1—C7—C6	119.25 (8)
C8—N2—N1	118.87 (7)	N1—C7—H7A	120.4
C8—N2—H1N2	121.6 (10)	С6—С7—Н7А	120.4
N1—N2—H1N2	119.4 (10)	N2—C8—C9	119.67 (7)
O3—N3—O2	122.20(7)	N2-C8-C13	123.82 (7)
O3—N3—C13	119.09 (7)	C9—C8—C13	116.51 (7)
O2—N3—C13	118.71 (7)	C10—C9—C8	121.61 (8)
O5—N4—O4	123.66 (8)	С10—С9—Н9А	119.2
O5—N4—C11	118.19 (7)	С8—С9—Н9А	119.2
O4—N4—C11	118.15 (7)	C9—C10—C11	119.52 (8)
O1—C1—C2	123.98 (8)	C9—C10—H10A	120.2
O1—C1—C6	115.86 (7)	C11—C10—H10A	120.2
C2—C1—C6	120.14 (8)	C12—C11—C10	121.62 (8)
C3—C2—C1	119.74 (8)	C12—C11—N4	118.64 (7)
С3—С2—Н2А	120.1	C10-C11-N4	119.74 (7)
C1—C2—H2A	120.1	C11—C12—C13	118.80 (8)
C2—C3—C4	120.73 (8)	C11—C12—H12A	120.6
С2—С3—НЗА	119.6	C13—C12—H12A	120.6
С4—С3—Н3А	119.6	C12—C13—C8	121.90 (7)
C5—C4—C3	119.58 (8)	C12—C13—N3	115.84 (7)
С5—С4—Н4А	120.2	C8—C13—N3	122.26 (7)
C3—C4—H4A	120.2	O1-C14-H14A	109.5
C4—C5—C6	120.96 (8)	O1-C14-H14B	109.5
С4—С5—Н5А	119.5	H14A—C14—H14B	109.5
С6—С5—Н5А	119.5	O1-C14-H14C	109.5
C5—C6—C1	118.84 (8)	H14A—C14—H14C	109.5
C5—C6—C7	121.21 (7)	H14B—C14—H14C	109.5
C7—N1—N2—C8	178.35 (7)	C13—C8—C9—C10	-0.77 (12)
C14—O1—C1—C2	12.61 (13)	C8—C9—C10—C11	-1.15 (13)
C14—O1—C1—C6	-168.81 (8)	C9—C10—C11—C12	1.96 (13)
O1—C1—C2—C3	177.25 (8)	C9—C10—C11—N4	-177.18 (8)
C6—C1—C2—C3	-1.27 (13)	O5—N4—C11—C12	173.05 (8)
C1—C2—C3—C4	0.36 (14)	O4—N4—C11—C12	-7.77 (12)
C2—C3—C4—C5	0.38 (14)	O5—N4—C11—C10	-7.78 (12)
C3—C4—C5—C6	-0.21 (14)	O4—N4—C11—C10	171.39 (8)

supplementary materials

C4—C5—C6—C1	-0.69 (13)	C10-C11-C12-C13	-0.75 (13)
C4—C5—C6—C7	178.17 (8)	N4-C11-C12-C13	178.40 (7)
O1—C1—C6—C5	-177.21 (7)	C11—C12—C13—C8	-1.28 (13)
C2-C1-C6-C5	1.43 (13)	C11—C12—C13—N3	179.24 (7)
O1—C1—C6—C7	3.91 (12)	N2-C8-C13-C12	-178.46 (8)
C2—C1—C6—C7	-177.45 (8)	C9—C8—C13—C12	2.01 (12)
N2—N1—C7—C6	-179.67 (7)	N2-C8-C13-N3	0.98 (13)
C5—C6—C7—N1	7.29 (13)	C9—C8—C13—N3	-178.55 (7)
C1—C6—C7—N1	-173.86 (8)	O3—N3—C13—C12	-1.30 (12)
N1—N2—C8—C9	-3.93 (12)	O2—N3—C13—C12	178.99 (8)
N1—N2—C8—C13	176.55 (8)	O3—N3—C13—C8	179.23 (8)
N2-C8-C9-C10	179.68 (8)	O2—N3—C13—C8	-0.48 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
N2—H1N2····O2	0.864 (15)	2.029 (15)	2.6253 (11)	125.4 (13)
N2— $H1N2$ ···O2 ⁱ	0.864 (15)	2.599 (15)	3.3475 (11)	145.6 (13)
C2—H2A····O4 ⁱⁱ	0.93	2.44	3.3113 (12)	155
C5—H5A···O2 ⁱⁱⁱ	0.93	2.60	3.3184 (11)	135
Symmetry codes: (i) $-r+1 - v+1 - z$; (ii) $r+1 - v - z+1$:	(iii) $r \rightarrow 1 \pi$			

Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z+1; (iii) x, y-1, z.

Fig. 1

Fig. 2

